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ABSTRACT

In developing turbulence models, different authors have proposed various model con-
straints in an attempt to make the model equations more general (or universal). The most
recent of these are the realizability principle (Lumley 1978, Schumann 1977), the linearity
principle (Pope 1983), the rapid distortion theory (Reynolds 1987) and the material indif-
ference principle (Speziale 1983). In this paper we will discuss sevcral issues concerning
these principles and will pay special attention to the realizability principle raised by Lum-
ley (1978). Realizability (defined as the requirement of non-negative energy and Schwarz’
inequality between any fluctuating quantities) is the basic physical and mathematical prin-
ciple that any modeled equation should obey. Hence, it is the most universal, important
and also the minimal requirement for a model equation to prevent it from producing un-
physical results. In this paper we will describe in detail the principle of realizability, derive
the realizability conditions for various turbulence models, and propose the model forms
for the pressure correlation terms in the second moment equations. Dectailed comparisons
of various turbulence models (Launder et al. 1975, Craft et al. 1989, Zeman and Lumley
1976, Shih and Lumley 1985 and one proposed here) with experiments and direct numeri-
cal simulations will be presented. As a special case of turbulence, we will also discuss the
two-dimensional two-component turbulence modeling.



1. Introduction

It is commonly accepted that the Navier-Stokes is the basic equation governing tur-
bulence. Hence, without any mode! approximations, direct numerical simulation (DNS)
should be an ideal approach to study all the aspects of turbulence. For example, using DNS
we may study the dynamics of various turbulence structures; the mechanisms of energy
transfer; and the interaction between different size of eddies; and we may also look at the
various one-point and two-point statistics. Unfortunately, DNS is limited to relatively low
Reynolds number and simpler flows due to a wide range of length and time scales that are
present in a turbulent flow and due to today’s computational limitations (both computer
hardware and numerical methods). Therefore, at present, DNS is far from computing
the practical engineering problems. For solving general engineering problems, turbulence
modeling must be used in conjunction with the CFD. The history and the literature of
turbulence modeling is described in detail by Lumley (1978,1983), Reynolds (1976), Laun-
der (1989) and Rodi (1988). All the model equations were designed to approximate the
Navier-Stokes equations. The model coefficients (or constants) have been tuned against
some basic turbulent flows. The accuracy of any model equation (if it works) varies from
flow to flow. In addition, we must use them with caution because any model equation will
miss some of the physics or violate some of the properties of the Navier-Stokes equations
because of the approximations made. Results in such cases may be misleading in studying
unknown turbulence phenomena. More severely, some of the modecl cquations may end up
with unphysical results, such as negative turbulence kinetic energy, etc.

For constructing turbulence models, various model constraints have been proposed
by different authors in an attempt to make the model equations as general (or universal)
as possible. Most recent of these are, the realizability principle (Schumann 1977, Lumley
1978), the linearity principle (Pope 1983), the rapid distortion theory (Reynolds 1987) and
the material indifference principle (Speziale 1983). However, some of the above mentioned
principles are not universal. For example, the material indifference principle is not valid for
general turbulence in which the fluctuating velocities are three dimensional. The material
indifference is valid only for strict 2D-2C (two dimensional and two velocity component)
turbulence which rarely occurs or probably does not exist in nature which is described by
three dimensional space. Speziale et al. (1987), in their DNS experiments, found that rapid
rotation had no influence on the isotropy of the 3D-3C homogencous isotropic turbulence.
So far, there is no evidence which shows a 3D-3C fluctuating velocity field will evolve to
a strict 2D-2C state under any conditions. Therefore, the material indifference (or frame
indifference) principle need not be considered in 3D-3C turbulence modeling. In addition,
as we will see later, for strictly 2D-2C turbulence the frame indifference principle principle
will be automatically satisfied and does not provide any additional or new constraints
for turbulence models. In another study, Reynolds (1987) also showed that in 3D-3C
turbulence modeling, at the 2D-2C limit, the frame indifference principle does not provide
any new model constraints and it also seems to be irrelevant to the modeling of the effect
of the rotation on turbulence (see the RDT described later).



The principle of linearity is also not universal, as it holds only for passive scalars.
It was pointed out by Pope (1983) that since the governing equations for passive scalars
are linear, the modeled equations for these quantities should possess the same property.
However, some of the models for the pressure correlations are nonlincar. The calculations
of slightly heated turbulent jets (in which the temperature is a passive scalar) with such
models (Shih et al 1990) show that the violation of this principle does not cause problems
since the results agreed well with the experimental data (also see Lumley 1983).

Rapid distortion theory (RDT) is a convenient tool for studying the asymptotic be-
havior of turbulence under the rapid distortion of the mean flow. For example, effect of
the mean flow (say strain rate) on turbulence. For some simple homogeneous flows RDT
can provide an analytical solution (Reynolds 1987), hence enabling us to calculate the
model terms of interest in the second moment equations. One may naturally ask if we
can use these results to calibrate the model coefficients appearing in the corresponding
model terms. Unfortunately, the answer is not very positive. RDT equations are valid
only for very high mean strain rate or very low turbulent intensity and in both these cases
the turbulence is in a very non-equilibrium state with the mean flow field. On the other
hand the second order modeling is based on the assumption that the turbulence is more
or less in an equilibrium state and is mainly characterized by one velocity and one length
scale (Lumley 1983). Therefore, RDT results are probably not appropriate for tuning the
coefficients of second order models. An interesting illustration of this point is made by
Shih et al. (1990) who showed that a model constant in the linear form of rapid pressure
strain model (Launder et al 1975) determined by matching RDT results is much worse
than the one determined from measurements. However this does not mean that RDT is
useless in turbulence modeling. On the contrary, RDT can provide the asymptotic behav-
ior of turbulence at the RDT limit. In many cases, we may obtain analytical expressions
which explicitly show the relations between turbulence and the mean flow field. For ex-
ample, the RDT results (Reynolds 1989) for pure mean rotation show a clear effect of the
mean rotation on the anisotropy of turbulence (b;; = Uy, /¢* — 6;;/3) through its second
invariant. However, all the existing rapid pressure strain models (including the one which
satisfies the material indifference at the 2D-2C limit) fail to exhibit any effect of rotation
on the second invariant of b;;. In this case, RDT will certainly guide us in removing this
deficiency from the existing models.

Realizability (defined as the requirement of non-negative energy and Schwarz’ inequal-
ity between any fluctuating quantities) is the basic physical and mathematical principle
that any governing equation should obey. Hence, among all the above mentioned model
constraints, realizability is the most universal, important and also the minimal requirement
for the turbulence model equations to prevent them from producing unphysical results. Re-
alizability can be applied to various turbulence quantities, for example, Reynolds stresses
u;u;, scalar fluxes u;0 and the triple correlations. For one-point second moment equations,
realizability for uyu; and u;0 is the most important. In this paper (section 3, also see Shih
and Lumley 1985) we will describe the principle of realizability, derive the realizability
conditions for various model terms, and propose the model forms for pressure correlation



terms in the second moment equations. The comparisons of various turbulence models
with DNS and measurements will be presented in section 4. However, first we will discuss
the 2D-2C turbulence.

2. Two-Dimensional Two-Component Turbulence

Reynolds and Grau (1988) argued that if one component of velocity is suppressed and
turbulence becomes 2C, the turbulence will not stay in the 2C state unless the turbulence
also becomes two dimensional (2D). In the DNS experiment, Speziale et al (1987) were
expecting that the homogeneous isotropic turbulence would become anisotropic under the
action of rapid rotation. However, their results did not show any such trend. Can a
wall bounded inhomogeneous turbulence become strictly 2D-2C turbulence under rapid
rotation? In a three dimensional space, it seems unlikely that the instantaneous turbulent
velocity field will become strictly or exactly 2D-2C turbulence. However, if we confine
a flow to a two dimensional space, as in the “thin soap sheet film”, then it may be possible
to obtain a 2D-2C turbulence. Numerically it is always possible to simulate such a special
“turbulence”.

In this section, we will derive a 2D-2C turbulence model for the rapid pressure corre-
lation term in the Reynolds stress equations (also see Reynolds 1987) and will show that

the frame indifference principle does not provide any model constraints.

The Reynolds stress equation can be written as

D
D ity = - + T3y — 2005 xug k (2.1)
where
T;
751 = 2U,,j[Mijpq + Myjpi] (2.2)

corresponds to the rapid part of pressure correlation term, and ¢? = u;u;. For homogeneous
turbulence, M;;,, can be expressed as

1 [k
Mispn == | 231 Bij(k) d’k (2.3)

where k; is the wave number vector and E;; is the spectrum tensor.

As usual, we assume that M;;p, is a function of the anisotropic tensor &;;, and then
the most general tensor form of M;;,, (which satisfies the symmetry in indices) will be
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Mijpg = a16i56pq + a2(8ipbjq + 6igbjp) + asbijbpg + asbpebij
+ as(8ipbjq + bighjp + 6jpbig + 854bip)
+ agbijbpg + ar(bipbjq + bighjp)

where,
uu; 1
by = i 2
J 7 5 01
6is =2

Il = —b,'jb,'j/z

(2.4)

(2.5)

Because of the Cayley-Hamilton theorem in a 2D space, b?; + I16;; = 0, the higher powers

b 1]

of b;; are not required. Seven coefficients a; are, in general, function of the invariants of

bij. From the continuity and definition of M;;,,, we have

Mpjpq =0
Mijpp = bij + 8:5/2

These give us the following relations between the coeflicients:

ay+3az —Ilag — IIay; =0
az +ag +4a5 =0

2ay + 2a; —2IIa; =1/2
2a4 +4a5 =1

The coefficients a;, az, a3 and a4 can be solved in terms of a5, ag, and ay:

a1 =3/8+ II(ar —ae/2)
a; =—1/8+ Ilag/2

a3 =—1/2 — 2as

a4 =1/2 - 2as

Therefore, the tensor M;;,, becomes

1 1
Mijpq = §(35,-,~6,,q — 8ipbjq — 6igbjp) + 5(%”:‘1 —8i5bp¢)

+ ag[bijbpg — I18:5854/2 + II(6:ipbiq + 6ig6jp) /2]
+ az(bipbjq + bighjp + I16;56p4)

where a5 drops out because of the following zero tensor:
bipbig + bighjp + 8jpbig + 8jqbip — 26jbpg — 265405 =0
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(2.6)

(2.7)

(2.8)

(2.9)

(2.10)



Using (2.9), the Eq.(2.2) becomes
%’- = Siq + 4(a6 + 2a7)bijbpeSp; + 2Q4;bi; + 2Q;5b;, (2.11)
where we have used the following relation:
4IIS;q + [4bighjp — 2(b;jbpg + biphjg)]Sp; =0 (2.12)
Equations (2.10) and (2.12) can be easily checked in the principal axes.

For the 2D-2C turbulence, the turbulence equation should be frame indifferent
(Speziale 1983). If we write Eq.(2.1) in a non-inertial coordinate system (designated by *)
which is rotating with an angular velocity 2k, we obtain

D
Dt~

u;uq* = 2(Up,j)*[Miqu + qupi]*?* + VU Tk
— 25jikﬂkm* — 2€jqukﬁ-ju_,‘* (2'13)
— Epik Q[ Mijpg + Myjpil*®

In order for this equation to be frame-indifferent, the last two lines must cancel each other.
This gives us the necessary constraint on the model form of M;;,, and the result is

a4 — az = 1 (214)

However, this condition is already satisfied by the coeflicients (2.8) and hence the frame
indifference principle does not provide any additional constraints. Therefore, in general
there is still one undetermined coefficient ag +2a7 in (2.11) and it must be determined from
experiment, direct numerical simulation or some other source. However, we may explore
its limiting value by using 1C condition. The condition of M;;,, at the limit of u; = 0
gives M} jp, = 0 for any j, p and g (because E;; = 0). This condition gives

ag +2a7=-1 if by =-1/2, (oru; =0) (2.15)

However, we must note that in general 2D-2C flows, the value of ag + 2a7 is unknown and
not necessarily —1. The limiting value of the above coefficient can also be obtained by
using the realizability conditions (3.4 a,b,c) described in the next section. Interestingly
enough such an analysis also gives ag + 2a7 = —1.

3. Three-Dimensional Three-Component Turbulence.

It is commonly thought that the turbulence in a three dimensional space is always
three dimensional (Tennekes and Lumley 1972) with three components of velocity. How-
ever, there are situations where the turbulence is considerably suppressed in a certain
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direction. For example when turbulence approaches a solid wall, the fluctuating velocity
component normal to the wall will be mostly suppressed and the turbulence will become
3D-2C. However, during this process, all the turbulent energy components should remain
non-negative and Schwarz’ inequality should always be satisfied. This is the concept of
realizability. In this section, we will discuss realizability in detail and discuss the model
development of pressure correlation terms in the second moment equations.

3.1 Realizability Concept.

In the second order closure, model equations for the turbulent stresses w;u; and scalar
fluxes @u; are proposed. Realizability for both of these quantities has been discussed
in Lumley (1978). To see the realizability concept, let us consider any two fluctuating
variables a and b, and their correlation matrix:

(5 %)
ab b2

The simple fact that aZ > 0, b2 > 0, and that Schwarz inequality « a? b'*’ — b > 0 should
be satisfied by any set of equations governing the evolution of a2, 12, and ab is called
realizability. A set of equations violating this principle could produce unphyswal results.
We will show that these three realizability constraints translate to the single requirement
that the eigenvalues of the correlation matrix should remain non-negative. We will now
show that if any one of the above three in-equalities becomes an equality, then one of
the eigenvalues of the matrix will vanish. Therefore, by ensuring these eigenvalues from
becoming negative will automatically ensure aZ, b2, (a® b_z—zz_bz) from becoming negative.
This implies that while constructing governing equations for a, b and their correlations,
we need to check only the eigenvalues of the correlation matrix. The non-negativity of the
eigenvalues of the matrix can be easily seen from their expression:

Az = (1/2) {(?Jrzf) +[(a® + B2)? — 4(?172_E2)]‘/2} (3.1)

Eq. (3.1) shows that A, will vanish if one of the following conditions occurs:

Now, let us take the derivative of (3.1) with respect to time t,
(M,2)e = (1/2){(a® + B2 )

y @R AP - A@LE + @ (), =2 (D)) (3:2)
(@ + 52)2 — 4(a? B2 — ab"))'/?
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To preserve the positive Az, we must require

()\2),1 Z 0, if )\2 =0 (336!)
or —— —
[ =able S0 it A =0 (3.3b)
a? + b2

From this necessary condition, it is straight forward to show that

a?, >0, if a2=0 (3.4a)
2,>0, if $2=0 (3.4b)
(@82 —ab),>0, if a2b2—ab =0 (3.4¢)

It is clear that (3.4) is the necessary condition for the quantities a?, 1?2 and a? 2 —

ab’ to remain non-negative, therefore, the condition (3.3a) is the necessary condition for
realizability. To find the sufficient condition for realizability, we must examine the higher
order derivative of the eigenvalue when it vanishes. For example, we may require

(A2),ee 20, if Ay=0. (3.5)
For more details on this aspect see the review paper by Lumley (1983).

Similar arguments can be applied to the turbulent stress tensor w;w; and to the cor-
relation matrix formed with a scalar # and velocities u;. Realizability for tensor w;u;
is straight forward, that is, its eigenvalues must be positive, which will ensure positive
turbulent energy components and the Schwarz inequality between fluctuating velocities.
Realizability for the correlation matrix of scalar and velocity is described by Eq. (3.1) and
(3.3) and is not as simple as for the Reynolds stress. Lumley has suggested a more general
quantity D;; consisting of turbulent stress and flux: D;; = 62 wu; — Bu; -G—E It can be
shown that realizability for the correlation matrix between the velocity and the scalar will
be ensured provided that the eigenvalues of D;; are positive.

It is interesting to note that if uq — 0 then the a direction will become one of the
principal axes of #;4;, and Ugt, (no summation on Greek indices) becomes one of the
eigenvalues of W;uj. At the same time, uq — 0 will make Dyo — 0, and the a direction
also becomes one of the principal axes of D;;. Dgq is then a vanishing eigenvalue of D;;.
However D,, will also vanish without u, — 0 if the perfect correlation between f and
uq is reached. Therefore, we conclude that if one of the eigenvalues of T;4;, say Uata,
vanishes, then Dqo will become a vanishing eigenvalue of the tensor D;;. However, the
reverse is not true i.e. if Doy — 0, it does not mean that gt (or 62) must vanish. This
is important in the modeling of scalar turbulence, as it indicates that realizability based
on u;u; alone is not enough and we must also consider the joint realizability based on D;;
to ensure that the model equations do not produce unphysical results.
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3.2 Realizability Conditions for Second Order Closure Models

The ideas discussed above can now be applied to the second moment equations to
obtain the realizability conditions. The general form of the model equations for the second
moments can be written as follows

—I%Tuj = — [ wwux — C(¢uibsn + q7u;6ix) |k
— (wuk Ujk + Ut Uik) + 2Up o(Xpjgi + Xpigj)
= Br(Yiij + Yiji) — (@35 + 26i/3)e
+ BiBu; + B;0u; (3.6)
%_97. = — [Busux — C'0¢%6:k) & — (BusUix +Tun O 1) + ;6%
+ 2U; x Xisk — BiYir — Bie/q? (3.7)
%97 = — (%uk)x — 20ux O — 2¢q (3.8)

where we have followed Lumley (1978) for the pressure transport model and in combining
the anisotropic part of the dissipation terms with the slow part of the pressure correlations.
The molecular diffusion terms in the above equations have been neglected. The definitions
of the rapid pressure correlation terms X,;q; and X;ji; the buoyancy terms Yi;; and Yii;
and the slow terms ®;; and ®; are listed in appendix A. In the above equations j; is the
buoyancy vector, © is the mean scalar and 6 is the fluctuating scalar.

To impose realizability into the above equations we may write the equations of T;u;
and D;; in their principal axes, i.e., the equations for Taus and Dgo. Then in order
to ensure that the eigenvalues of Uguy and Dy, remain positive during the evolution of
turbulence, the following constraints must be satisfied

—g—uaua — 0 f Tqug —0
5 (3.9)
EDaa —0 1f Daa—"o
2
—=TUala 20 if Ugg — 0
be (3.10)
D
—,?DO,QZO Zf Daa—>0

Substituting (3.6)-(3.8) into (3.9) we obtain the following necessary realizability conditions
for Xpjqi, Xijk, Yir;j and Yix:

Up,¢ Xpaqa —0
if u_?, -0 (in p.a. of R;;)



Up,q(b_’szaqa —%:Xapq) —0
if Daag—0 (ul #0) (in p.a. of Dy;)

Up,¢0uaXapg — 0
if Daayu? =0 (in pa. of Dyj,Ri;)

Yaaa _b—a: —0
ifDaasuZ — 0  (in p.a. of Dyj, R;j)

Yiaa (v # @) — 0
if Daa,u% =0  (in p.a. of Dij, Rij)

0?Yipa — OuqYiq (any k)  — 0
if Dga —0 (u2 #0) (in p.a. of D;;)

OuoYoas — 02 6u, —0

if Daa,@ — 0 (in p.a.of D;j, R;ij)

OuoYye (v # a) -0
if Dgo,u: —0 (inpa. of D;;, R;;)

(Poa +2/3)e — F
if t_tz — 0 (in pa. of R;j)

20uaPoae/q? — 0% (Paq +2/3)e — 2equz — F
if Daa —0 (u2 #£0) (in p.a. of Dyj)

20uoBoe/q? — 2equz + O2F*  — F)
if Daa, 4% —0 (in p.a. of Dij, Rij)

(u?xuk - 2Cq2uaéak)ak - 0
if u2 50 (in p.a. of Ryj)

20uq(Guaux — C'q%0 bak) k

- ‘G_E(uguk - 20q2ua‘sak)$k —@(M),k — 0
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if Doa =0 (uZ #£0) (in p.a. of Dij)

2m(euauk —_ C'W 5ak),k —_uTa(E),k — 0
if Daasu? — 0  (in p.a. of D;j, Rij)

These constraints will be used in the next section in constructing the models for
pressure-correlations.

3.3 Modeling of the Rapid Pressure-Correlation Terms

First let us look at the rapid terms associated with the mean strain. The symmetry
property of these terms requires

— . . - . — v . . — f.'
ijqi - XJqu qut - XPJ"I’ Xle = Ak

If we assume that X,,Jq, is a function of T;u; only and that X;;; is a function of both
w;u; and Bu;, but linear in fu;, then the most general forms of X,jqi and X;ji satisfying
the above symmetry constraints are

Xpiqil @@ = a164i6p; + 02(6pgbij + 8456pi) + @3bgibp; + a6y
+ a5(6pgbij + 6ijbpg + 8jgbpi + 5Pibqj) + aﬁéqib?;j + 0‘75pjbgi
+ ag(6pqb; +6,]bf,q biqb%i + 8y b2 ;) + agbyiby;
+ a10(bpgbij + byjbpi) + allbqibpj + al?bmqu
+ a13(bpgb%; + bijbi, + bg;ba; + bpib?,)

Xik; = P16:x8u; + Bo(6:;0ur + 8;k0u;) + B3bibu;
+ Ba(bij8uy + b;10u;) + Bs(6:5bkp + Sk jbip)Ou,
+ Bs zkape_“p + Brb kaPy“—p + Ba(bijbip + kab‘l')-a—Jl:
+ Bo b 8u; + ,510(52 Buy + b2k9u,) + B zkb,,ﬁup
+ ﬂ12(5,'jb + 5_,kb )Gup + ,513b,kb”,9up + B4 ,Lb”,oup
+ ﬁls(b?jbkp + bkjb,-p)eu,, + ,Blﬁ(bijbkp + bijb ,-p)9u,,
+ ﬂl?b?kbgp%; + ﬂlS(b?jbip + bi,-b?p)ﬁﬁ (3.13)

Where o’s are, in general, functions of the second and third invariants (i.e. II and III)
of the anisotropic tensor b;; and f’s are functions of the invariants formed by b;; and fu;

11



in addition to II and III. From the definition of the rapid terms and incompressibility,
following properties are obtained:

Xopgi =Ugli,  Xpkgk =0,  Xiik = Oug, Xigx =0 (3.14)

Using these properties and the realizability conditions given in the last section we can
determine the limiting values of all the model coefficients provided we ignore the terms
with the fourth powers of b;; (which is a reasonable assumption since the magnitude of
b;; is always less than unity). The final expressions of the X,;,; and X;;x reduce to the
surprisingly simple forms and are given by

— 1 1
Xpiail©* = 55(46p;63i — 8pgbis = bqj6pi) — 3(84ibp; — bp;byi)
11 4
+ al(‘qubij + bijbpg + 8qjbpi + bpibgj — '3_5qibm' - §6ijqi)
+ a2(25m~b3,- — 3bqu,'j — 3bqup,' + bqibpj) (315)
2 — 1 - -
X,'jk = g&ngUk — T6(5ik9u]' + 5jk9u,-)
+ Cpi1bi;j0uy

+ Cpa(biruj + bjibu;) + Cpsbijbibur (3.16)
where the limiting values of the coeflicients are

1 1 1 3 1

0 2= Coi=15 Cp2=-15 Cps =3

a = -—

The last line in both (3.15) and (3.16) represents the non-linear contribution, and
if neglected, the linear models used by various other workers will be recovered. It is
important to note that the above values of the coefficients a;, as, Cp;, Cp2, and Cps
are their limiting values at the realizability limit, i.e. when U t,, Daa — 0. For general
turbulent flows U, and D,o are not zero and hence the values of the coefficients may
deviate from their limiting values. As was pointed out before, in gencral a’s are functions
of IT and III, and Cp’s are functions of the invariants formed by the anisotropic tensor
and the heat flux. Some guidance can be obtained by inspecting the following two useful
parameters (see Lumley 1978, and Shih and Lumley 1986)

F=1+4271IT+9II (3.18)
Fi=9d} - -2-7-d?,. + 9 (3.19)
2 2
where
Il = lb’é’. IIT = lbé’.
2 11} 3 it

P -ty

Y79 wm — Ou; Ou;

12



It can be shown that both F' and Fy are bounded between 0 and 1, and particularly

F -0 when ugug, — 0
Fy — 0 when Dgyq — 0

By using this information, it is convenient to write

ay = -%0(1 + AF®) (3.20)
as = —(1 4 BF®) (3.21)
10
1
Cr = 75+ G Fs (3.22)
3
Cpr = =+ CoFf (3.23)
1
Cps = ¢ + CsFy (3.24)

where A, B,Cy,C, and C5 are adjustable constants but « is not as arbitrary as it might
seem at first look. The condition (3.10) suggests a = 1 (see Lumley 1983, or Shih and
Lumley 1986). In the limiting case these coefficients reach their limiting values. Shih et
al (1985, 1987) took A = 0.8 and B = 0.0 which fit the DNS data quite well. However,
it seems more judicious to use homogeneous shear flow experiment to obtain the values
of these coefficients (this is not done in the present study). Shih et al (1990) set C; =
Cy; = C3 = 0 in their computations. The present study indicates that the full form of
Cpi1,Cp2 and Cps should be used. The experiment of Tavalouris and Corrsin (1981)
suggests C1 = 1.8, C; = —1.8, and (3 = 4.5.

Now returning to the modeling of the buoyancy terms Y};; and Yj;, we assume that
these are functions of the anisotropic tensor and the heat flux. Their minimum forms
required to satisfy realizability are as follows

Yie; = 515.7:—9—1;; + ,32(5ijm + 5jk?u—i) + ﬂ3bikﬁj
+ Ba(bijOur + bk Bu;) + Bs(6ijbap + Ok;bip)u,
+ BobirbipBup + Brbikb;p0up + Ba(bijbp + bijbip)0u,
+ Bob%Bu; + ﬁm(b?,-%: + b?ko_ui) + ﬂn&kbﬁpg_up-
+ B12(6:;b%, + 8;xb%,)0u, (3.25)
Yik = 1026 + 120%bix + 730u; Oug + 4 (OurbipBu, + Ouib,Ouy)
+ 75.5565: + Y6 bipbkq%; E
(0 T + 1,y ) (526)

The above forms already satisfy the following symmetry conditions

Yiij=Yuj;, Y=Y
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By definition, and incompressibility, these tensors have the following additional properties:
Yirj = Ouj, Yie =6

Using these and the realizability conditions given in the last section, all except one coeffi-
cient can be determined exactly. Their final forms are

4
Br =3(1 - s)
_(Bs—1)
By =
8 _(1-118)
3
Bs =Ps — 1
By = -2+ r?
5 T 6II0%¢2 — 10r2 — 361Irbr
24
o 27350
—7
Br = éﬁ + Bs E_I—I' - 1)
Bs —355
Bo = 6II ﬂ"’(sn
B1o =0
P11 = — 255
P12 =0
(62 + 1092 )
Y1 = 902
s [18(x2 + 87 @F)rbr + r2(T6% ¢ — 15¢2) + (3611 — 10)(Z ¢7)?]
’ 902 g2 (2 — 62 g2)
+ (q2/9)(3rbr+6IIr - 211§? 2)
b (r2 - 62 ¢%)
_r2(BIT+28)— 8% (611 +1T) 7(r2)?
18I1(z2 — 62 ¢?) (6I1)62 (2 — 62 %)
_s [_rﬁ(12II +20) + 108IIrbr + 62 ¢2(1081I% — 2111 — 5)
i OII(% - 82 ¢7)
5(3I1 + 1)(r2)?

TP -7 )
A [_r}_?usu +4) + 9¢°rbr — 6% g?(611 + 1)%
” o2~ 92 )
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r? r?

T 302 (r2 — 62 &%)
-2 12rbr — 5r2 + (1211 — 1)67 ¢2

BE=F - )
6IIr2 + 3rbr — 21192 ¢2
I
_ =305
‘74—q—2
_ pr R
75:6%_{_’85%4—%(%_%)

~¢ = undetermined coef ficient

v =10

where r?2 = Ou; u;, rbr = Ou; bij -éu__, These expressions may seem a bit complicated
but they ensure joint realizability. Since 7 is undetermined it was taken as zero in the
calculations to be presented later in this paper. As an illustration, Appendix B lists the

values of all the above coefficients as calculated from the buoyant plume experiment (1990).

3.4 Slow Terms

Lumley (1978) has suggested the following expression for the slow term of the pressure-
strain correlation

Qi = Bbi; + y(birbrj + 2116;5/3) (3.27)

where § and + are, in general, functions of the invariants II and III, and the Reynolds num-
ber. Most of the workers have used Rotta’s hypothesis which is obtained by ignoring the
nonlinear term. In LRR model, § is taken as a constant, whereas Lumley (1978) proposed
an expression involving II, IIT and the turbulence Reynolds number. This expression for g
was calibrated from experiments in which invariant IIT was negative. Gence and Mathieu
(1980) and Choi (1983) experimentally studied the return to isotropy of homogeneous flows
and found that the return to isotropy is slower when the invariant III is positive. Choi and
Lumley (1984) suggested keeping the complete form of (3.27) and using their experiments
proposed new forms of # and v (see Appendix C). We will use both Lumley (1978) and
Choi and Lumley (1984) models with the presently proposed models for the rapid term to
see how the combinations fair.

For the slow part of the pressure temperature-gradient correlation Shih and Lumley
(1985)proposed

®; = f10u; + f2birOus (3.28)

Again most workers ignore the second term and take f, as a constant. Shih and Lumley
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(1986) and Shih et al (1990) use a variable form of f; given by

fBL el (BN

1/2
2" B e (I1af3+bi;d5; - bijdij) + HF, (3.29)

and take f; as zero. The invariant II; appearing in the above expression is defined by
11y = (dijd;; — df;)/2 (3.30)

This expression is based on the joint realizability principle and the parameter H is given in
Shih et al (1990) and S is the same as proposed by Lumley (1978). Both of these functions
are given in Appendix C. In the present study, we apply the joint realizability condition
to (3.28) keeping the full non-linear model for the pressure strain to obtain

5 =g+ €’ _ (B+~II—2)II/6
! 67 ¢ (II/3+bid%; — bijdy;)
y (=11 II; + b%,d%; — b%,d,;)
+
2 (ILy/3 +bi;d%; - b.,d.,)

(3.31)
+HF)?

where # and v are the same coefficients as appearing in (3.27). For 4 = 0, the Shih and
Lumley (1986) model is recovered. In the present study we used the # and v as given by
Choi and Lumley (1984) and these are reproduced in Appendix C.The above expression
seems to give better agreement with the experiments. In the experiments analysed, the
value of f; varied from 6.4 - 8.0. The values used by Zeman and Lumley (1976), f; = 7.5,
and Newman et al (1981), f; = 6.6, fall within this range.

3.5 Other Models

Other researchers, who employ the realizability concept, approach the models for
pressure correlation terms in a similar but slightly different way. Craft et al. (1989) have
proposed non-linear models for these correlations. They start with the similar form of
the models as Shih and Lumley (1985), but apply realizability based only on ugug — 0.
Their models do not satisfy joint realizability and, therefore, are not fully realizable when
a scalar is present. If we impose these conditions on their models, their coefficients must be
changed such that their models will reduce to the same form as proposed here. Reynolds
(1987) obtained a set of model constraints using 2D-2C conditions on X,jq which also
ensure realizability. His model keeps fourth powers of b;; and , therefore, is more general.
However, regardless of the complexity of the model form, the comparison between his
model and the DNS data did not show significant improvement over the other models.
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4. Comparison between Models and Experiments

For model evaluation we will use the homogeneous shear flow experiment of Tavoularis
and Corrsin (1981), DNS of the same flow by Rogers et al (1986) and the buoyant plume
experiment of Shabbir and George (1990) and Shabbir (1991). Note that for the homo-
geneous shear flow the buoyancy effects are negligible. For the experiments the pressure
terms were obtained as the closing terms in the balances for the Reynolds stress and heat
flux equations. The pressure correlations obtained in this fashion will certainly have some
error but this is the closest we can come in obtaining these from the experiment. Also a
direct comparison between these and their models is still a better approach in establishing
their accuracy rather than solving the differential equations and then comparing the mean
flow results etc. with the experiments.

4.1 Pressure Strain Correlation

First we look at the comparison between the pressure strain models and the experi-
ment of Tavoularis and Corrsin (1981). The velocity field of this experiment is essentially
the same as that of Harris et (1977) and, therefore, the results presented here are applicable
to that experiment as well. Figure (1) shows a comparison betwcen the experiment and
five different models. The two complete linear models are Launder et al (1975) (LRR) and
Zeman and Lumley (1976) and these are of the exact same form except the model coeffi-
cients. Of the two, the Zeman and Lumley model seems to give a hetter overall agreement
with the data. The Shih and Lumley (1985) model uses linear form for the slow term with
3 given by Lumley (1978) and is off by a large margin. This is because 3 of Lumley (1978)
was calibrated against flows with negative III whereas for the experiment under consider-
ation this invariant is positive. When instead the Choi and Lumlecy (1984) model is used
for the slow term, all the pressure strain components are predicted within experimental
accuracy. Craft et al (1989) also does a good job in predicting all the components. This is
to be expected since the coefficients in their model are determined from the homogeneous
shear flow experiment. :

Figure (2) compares the slow term models with the DNS (198G) results of the ho-
mogeneous shear flow. Lumley’s (1978) linear and the Choi and Lumley (1984) nonlinear
models give the best agreement with the data. Recall that these two models gave very
different results for the experiment of Tavoularis and Corrsin (1981). Unlike that experi-
ment, the Reynolds number in the DNS is much smaller. Both of these models incorporate
the similar low Reynolds number behavior and, therefore, give similar overall results. Both
the Zeman and Lumley (1976) and LRR (1975) model are off the data. The non-linear
model of Craft et al (1989) performs well only for the &, and ®,, components. Figure (3)
compares the three different models for the rapid pressure term with the DNS of Rogers et
al (1986). Of the three Shih and Lumley (1985) non-linear model gives the best agreement.
The LRR (1975) model performs reasonably only for the 727 and II7%"*? components.
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We also note that the Craft et. al. model performs better than the LRR model.

Figure (4) compares the total pressure-strain models for the buoyant plume experiment
of Shabbir and George (1990). For the streamwise component the Zeman and Lumley
(1976) model gives the best agreement. The Shih and Lumley (1985) and LRR (1975)
models are off the experiment near the centerline of the plume but are within experimental
uncertainty for the rest of the flow. Craft et. al. (1989) overpredicts while Shih-Choi-
Lumley underpredicts the experiment. For the radial component Zeman and Lumley
(1976) model performs the best and, except for Shih-Choi-Lumley, all the other models
give reasonable agreement with the experiment. For the II,, component, which is the most
important one, Shih-Choi-Lumley, LRR (1975) and Craft et. al. (1989) are in excellent
agreement with the experiment. Zeman and Lumley (1976) is also within experimental
uncertainty where as Shih and Lumley (1985) overestimates the experiment. We note that
no single model gives good agreement with all the flows. It is our feeling that the source
of this is either the coefficients for the slow term or the rapid term ( a3, given by equation
(3.20) was assigned its limiting value). Further work is uderway in order to sort this out.

4.2 Pressure Temperature-Gradient Correlation

Now we compare the models for the pressure-temperature gradient correlations with
the same three flows. First we look at the experiment of Tavoularis and Corrsin (1981)
(figure 5). For the streamwise correlation Shih and Lumley (1985) and the present model
provide the best agreement with the data. The Craft et. al. (1989) model overpredicts the
data whereas Zeman and Lumley (1976) underpredicts it. The linear model of Launder
(1975) does a reasonable job. For the correlation in the cross-strcam direction the present
model gives the best result and all the other models underpredict the experiment. Since
this experiment was used in adjusting the constants in the present model, this comparison
does not provide a true test for this model.

Figure (6) shows a similar comparison with the DNS of Rogers et. al. (1986) for the
same flow. For the streamwise correlation, again Shih and Lumley and the present model
give the best agreement with the data. The non-linear model of Craft et. al. (1989) and
the linear model of Launder (1975) also give reasonable results. For the correlation in
the cross-stream direction , however, none of the models predict the data, although at the
initial stages of the flow the Launder model does a satisfactory job. However,toward the
last part of the simulation, where the simulation is more developed, the Launder (1975)
model underestimates the simulation by 40%. At the same location the present model
overestimates the data by the same amount.

The same models are compared with the buoyant plume experiment of Shabbir and
George (1990) in figure (7). For the streamwise component we note that the present
model gives excellent agreement with the experiment. Both Shili and Lumley (1985) and
Zeman and Lumley (1976) models also do a reasonable job whercas the rest of the models
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underpredict the experiment. For the radial component, II,., the present model somewhat
underpredicts the data near the central part of the plume, but produces the correct peak
value and gives a very satisfactory overall agreement with the experiment. The rest of
the models are off by a large margin. Note that the prediction of the radial component is
extremely important for the correct calculation of the mean buoyancy field.
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APPENDIX A

The following are the exact expressions for the rapid and buoyancy contributions to
the pressure-strain and pressure scalar-gradient correlations.

Xpias == (1/am) [ [ [yt i/l =
Xie == (fam) [ [ [GIo0 o/ =
Yy == 1/4x) [ [ [GR ado/r =1
Vi == (u/am) [ [ [EORCLoflr

The slow terms are defined by the following expressions

—®;; e =(1/p)pai(ui,j + uj,i) — 205 pujk + 2€6;/3
—®; /g% =(1/p)patfi — (v + 7)8 kuiiz

The total (i.e. sum of the slow, rapid and buoyancy parts) pressure strain and pressure
scalar-gradient correlation has been denoted by II,; and II; respectively.
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The values of the model coefficients 8’s and 7’s as calculated from the buoyant plume

APPENDIX B

experiment of Shabbir and George (1990)
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APPENDIX C

Here we list the various model coefficients for the slow terms used in the present study.
The coeflicient 2 used in the Shih and Lumley (1985) model is the one suggested by Lumley
(1978) and is

B =2+ exp[-7.77/R}"?]
{72/R‘/ 2 +80.1In[1 + 62.4(—IT + 2.3111)]} (% + 31T + IT)

The function H appearing in (3.29) and (3.30) is taken from Shih et. al. (1990) and is
given by
H=11+0558— 1)tanh[4(TL ~1)]

The coefficients § and v appearlng in equation (3.27) and suggested by Choi and Lumley
(1984) are given by :

p*Fl/2
) SR A
P=2t Tr e
p$F1/2 G
LTEYDN:
where
¢ =(III/2)'1*, = (-II/3)"/?
X =%, G=—x*+08"

769 73.7

p* =exp[—9.29/R;*]{( P —I)—[296—16.2(,\'+1)4]II}

For the Zeman and Lumely (1976) model following set of cocfficients were used

1
(~1510)

B = 1+ (1 — 24I1)*?]

h =(§+ qeg)

Note that these revised coefficients are taken from Zeman (1981) and are different from
the values originally used by Zeman and Lumley (1976). It should also be pointed out that
the expression for g is clipped at 6.0.
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non-negative energy and Schwarz’ inequality between any fluctuating quantities) is the basic physical and mathematical
principle that any modeled equation should obey. Hence, it is the most universal, important and also the minimal
requirement for a model equation to prevent it from producing unphysical results. In this paper we will describe in detail
the principle of realizability, derive the realizability conditions for various turbulence models, and propose the model
forms for the pressure correlation terms in the second moment equations. Detailed comparisons of various turbulence
models (Launder et al. 1975, Craft et al. 1989, Zeman and Lumley 1976, Shih and Lumley 1985 and one proposcd here)
with experiments and direct numerical simulations will be presented. As a special case of turbulence, we will also
discuss the two-dimensional two-component turbulence modeling.
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